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Abstract

Abundance estimation methods that combine several types of data are becom-

ing increasingly common because they yield more accurate and precise param-

eter estimates and predictions than are possible from a single data source.

These beneficial effects result from increasing sample size (through data

pooling) and complementarity between different data types. Here, we test

whether integrating mark–recapture data with passive acoustic detections into

a joint likelihood improves estimates of population size in a multi-guild com-

munity. We compared the integrated model to a mark–recapture-only model

using simulated data first and then using a data set of mist-net captures and

acoustic recordings from an Afrotropical agroforest bird community. The inte-

grated model with simulated data improved accuracy and precision of esti-

mated population size and detection parameters. When applied to field data,

the integrated model was able to produce, for each bird guild, ecologically

plausible estimates of population size and detection parameters, with more

precision compared with the mark–recapture model. Overall, our results show

that adding acoustic data to mark–recapture analyses improves estimates of

population size. With the increasing availability of acoustic recording devices,

this data collection technique could readily be added to routine field protocols,

leading to a cost-efficient improvement of traditional mark–recapture popula-

tion estimation.
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INTRODUCTION

Evaluating trends in species abundance is central to ques-
tions of single species and whole ecosystem conservation.
Hence, estimating the size of populations remains as criti-
cal as it is challenging. At the heart of the issue is that eco-
logical sampling of organisms is rarely exhaustive, and
therefore to estimate population size we need to also esti-
mate probabilities of detection (Dorazio, 2014). Detectabil-
ity may vary according to a wide range of variables, such as
weather conditions or observer skill level. To help deal
with imprecision and bias in data collection, there has been
an upsurge in methods that combine different data sources
to generate accurate and more precise estimates of species
distribution and density (Fithian et al., 2015; Koshkina
et al., 2017; Peel et al., 2019; Williams et al., 2017).

The concept of data integration (combining data types)
relies heavily on complementarities between data sources.
In general, different methods of data collection will suffer
from different detection biases; for instance, it may be
more likely that a species is detected by citizen science
programs in areas with high human population density
(Johnston et al., 2020), and it may be easier to detect ani-
mals on visual surveys in open compared to forested habi-
tats (Rodrigues & Prado, 2018). Data integration helps deal
with these biases, because shared biological parameters
are estimated simultaneously from multiple data types that
are not equally vulnerable to the same problems (Miller
et al., 2019). Thus far, integrated models have largely
focused on spatially explicit landscape-level models of spe-
cies distribution, often generated using large online data
sets. Whether data integration methods will be effective in
estimating abundance of species in smaller-scale field-
generated data sets is less clear (Isaac et al., 2020).

Mark–recapture has been employed for population
estimation across a broad range of taxa including birds,
mammals and fish (Schwarz & Seber, 1999). While
mark–recapture analyses can provide robust estimates of
population size, they can also suffer from biases, for
instance when environmental covariates affect both detect-
ability and population size (Banks-Leite et al., 2014; Oyster
et al., 2018). Data integration methods can mitigate these
problems and estimate the contributions of the different
determinants of abundance and detection. In the case of
mark–recapture, we could expect a benefit of combining
these data with another type of data, ideally one collected
using a method whose detectability is not influenced by
the same variables.

Acoustic data could provide this opportunity. Acoustic
recordings are usually collected using automated devices
that are easy to operate, require low levels of effort (instal-
lation, collection, and storage), and can generate a wealth
of data (Bradfer-Lawrence et al., 2020). However,

abundance estimation from acoustics alone, though feasi-
ble, can be complicated due to either double-counting
(overestimation) or saturation (underestimation) effects
(Dawson & Efford, 2009; Doser et al., 2021). Additionally,
to estimate abundance from acoustic data it is often neces-
sary to know species’ vocalization rates, which is typically
not feasible. Combining mark–recapture with acoustics
could result in improved estimates, partly because the fac-
tors affecting detectability of each method are different
(Dawson & Efford, 2009). In a practical sense, simulta-
neously collecting both mark–recapture and acoustic data
in the field is very achievable; mark–recapture protocols
are already widespread and adding an automatic recording
unit to these systems is logistically simple and inexpensive
(Whytock & Christie, 2017).

A recent study by Doser et al. (2021) combined acoustic
data with point counts to estimate the abundance of a bird
species and found that the integrated model improved accu-
racy and precision of results. Here, we build on the ideas of
Doser et al. (2021) and take the next natural steps, from point
counts to mark–recapture data (as is common in, e.g., bird
surveys) and from single species to whole communities. Our
modeling framework integrates mark–recapture data and
count data from acoustic recordings to estimate population
size of amulti-guild community. Thismethod is widely appli-
cable to any animal community for which mark–recapture
and acoustic data are available. Our aim was to assess
whether the addition of acoustic data to mark–recapture
models improved accuracy and precision of population size
estimates, and to illustrate the application of the method to a
data set of bird communities in African agro-ecosystems.

METHODS

Model overview and assumptions

Our model integrates mark–recapture and acoustic data
into a joint likelihood, to estimate population size (N).
Our focus was on exploring the trade-offs and comple-
mentarities of the joint analysis of these two common
data types, and we wished to isolate these issues from the
wider problems of population change and emigration.
Therefore, we assumed throughout that population size
remained constant during each sampling period.

Determinants of population size

Throughout these analyses, we considered animal com-
munities made up of several subgroups. We use the term
“guilds” to describe taxonomic groups, which may be spe-
cies but could also be functional groups, families, etc. We
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considered site as the discrete area covered by the sam-
pling radius of our mist nets, and therefore the population
size at site j is the number of animals whose home ranges
overlap with this area. Importantly, we assumed that the
detection radius of the acoustic recorder(s) was the same
or smaller than the mist-net sampling radius, so that the
number of individuals detectable by acoustic recorders
was proportional (but not necessarily equal) to the number
of individuals detectable by mist nets. We assumed that
the population size (Nij) of guild i at site j was Poisson dis-
tributed (but our method is easily adapted to other distri-
butions) with expected number of animals per site Dij

Nij � Poisson Dij
� � ð1Þ

And Dij was modeled as a log-linear function

log Dij
� �¼

XQf

q¼0
νiqXjq: ð2Þ

The linear predictor comprised Qf covariates, Xjq, affect-
ing population size, and their respective regression coeffi-
cients νiq, where q refers to the qth covariate (the
intercept (νi0Þ was included by setting Xj0 ¼ 1).

Mark–recapture

Instead of dividing each survey event into arbitrary dis-
crete time periods as is commonly done in mark–
recapture studies (Schofield et al., 2018), we modeled the
capture history of every animal as a homogeneous
Poisson process (HPP) in continuous time. The HPP had
a rate of rij captures per unit time (Xi et al., 2007), and
the time period over which sampling occurred was Tj.
The HPP process implies that the waiting time to first
capture of an individual k of guild I at site j (ckij) follows
an exponential distribution with mean 1=rij

ckij �Exponential rij
� �

: ð3Þ

By definition, if ckij >Tj, the animal was not detected.
The probability of detection is then P ckij <Tj

� �¼
1�exp �rijTj

� �
. Therefore, the total number of first cap-

tures nij for the ith guild at the jth site was

nij �Binomial Nij,1�exp �rijTj
� �� �

: ð4Þ

After the animal was caught once, the total number of
recaptures (ykij) in the remaining time (conditional on
ckij <Tj) was a Poisson variate given by

ykij � Poisson rij Tj� ckij
� �� �

: ð5Þ

Capture rate, rij, was modeled as a log-linear function

log rij
� �¼

XQh

q¼0

ρiqWjq ð6Þ

comprising Qh covariates, Wjq, and their respective
regression coefficients ρiq, with q referring to the qth
covariate and where ρi0 is the intercept. This mark–recap-
ture model assumes that capture rate did not vary
between individuals of same guild, did not decline
with consecutive captures, and marks were not lost.
Additionally, we assumed instantaneous sampling
(i.e., individuals were immediately available for sampling
after capture).

Acoustics

We assumed that it was not possible to identify individ-
uals from acoustic data (but see Dawson & Efford, 2009).
Additionally, non-automated counting of vocalizations
over a whole community from acoustic recordings would
require large amounts of processing time. Therefore, to
simplify data extraction (Appendix S1), we considered a
set of Lj discrete listening periods each lasting M time
units, during which guilds may be heard and thus
recorded as present. We modeled vocalizations as a HPP
in continuous time with rate λijNij per unit time, where
λij was a site/guild-specific per-capita vocalization detec-
tion rate. The probability that at least one vocalization
was recorded in any given listening period was the proba-
bility that the time to the first vocalization was less than
M. We modeled the total number of detections aij over Lj

listening periods as

aij �Binomial Lj,1�exp λijNijM
� �� �

: ð7Þ

Vocalization rate, λij, was modeled as a log-linear
function

log λij
� �¼

XQr

q¼0

ψiqGjq ð8Þ

comprising Qr covariates, Gjq, and their respective regres-
sion coefficients ψiq, with q referring to the qth covariate,
and ψi0 the intercept.
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We assume that the probability of capturing an indi-
vidual bird is independent of the probability of it being
detected by the acoustic recorder, and consequently the
mark–recapture and acoustic models are independent,
both conditional on the true latent population size Nij

(Miller et al., 2019). We fit our models using Bayesian
inference with the JAGS 4.3.0 software (Plummer, 2017)
executed using the runjags package (Denwood, 2016) in
the R statistical computing environment (R Core
Team, 2020). For each model, we ran three chains of
100,000 iterations with a burn-in period of 5000 itera-
tions. Model convergence was assessed by visually
inspecting chains and with the Gelman-Rubin R-hat
diagnostic, with convergence presumed when R < 1.1.

Simulation study

To assess whether the integrated model produced more
accurate and precise estimates compared with single-
data-set models, we compared it with a model that used

just mark–recapture data (Equations 1–6). We applied
each model to simulated data from 20 sites each assumed
to contain three guilds (labeled A, B, and C), and to have
been visited twice. This represents a minimally realistic
design for a mark–recapture study, given the number of
guilds and parameters involved. We included several
environmental covariates: the first was a site-specific
covariate that affected both population size and capture
rate (Equations 2 and 6). We added this covariate because
previous models have encountered identifiability issues
when retrieving covariates that affect both population
size and detectability (Fithian et al., 2015; Simmonds
et al., 2020). The second covariate affecting population
size was shared across guilds and sites but varied with
visit (Equation 2). We generated data using the model
statements above and used the same priors for both
models (see Table 1 for parameter values and priors). At
each site, capture period Tj was set to 6 h, and we
assumed 20 listening periods (Lj) each lasting 0.03 hours
(2 min; M). For both models we examined accuracy and
precision by recording the mean and 95% Bayesian

TAB L E 1 For each parameter in the model, true value used to simulate data, prior (standard deviation [SD]), and mean (95% Bayesian

credible intervals) of parameter estimates from model with only capture–recapture data and integrated model.

Parameter Description
Simulation
value Prior (SD) Capture–recapture Integrated

νA0 Intercept of linear predictor of
population size for species A

5.00 6.00 (0.82) 4.85 (4.26, 5.52) 4.88 (4.55, 5.25)

νB0 Intercept of linear predictor of
population size for species B

3.00 6.00 (0.82) 3.36 (2.61, 4.21) 3.34 (2.72, 3.94)

νC0 Intercept of linear predictor of
population size for species C

4.50 6.00 (0.82) 4.77 (3.94, 5.65) 4.86 (4.04, 5.70)

ν1 Effect of site-level covariate Xj1 on
population size

0.01 0.00 (1.00) 0.01 (0, 0.02) 0.01 (0.01, 0.01)

ν2 Effects of visit-level covariate X2 on
population size

0.15 0.00 (0.20) 0.11 (�0.01, 0.23) 0.11 (0.01, 0.21)

ρA0 Intercept of linear predictor of capture
rate for species A

�4.00 0.00 (3.16) �3.82 (�4.49, �3.22) �3.86 (�4.23, �3.5)

ρB0 Intercept of linear predictor of capture
rate for species B

�3.50 0.00 (3.16) �3.75 (�4.64, �2.98) �3.75 (�4.43, �3.10)

ρC0 Intercept of linear predictor of capture
rate for species C

�4.80 0.00 (3.16) �5.04 (�5.95, �4.19) �5.13 (�5.99, �4.28)

ρ1 Effect of site-level covariate Wj1 on
capture rate

�0.01 0.00 (1.00) �0.01 (�0.02, 0) �0.01 (�0.02, �0.01)

ΨA0 Intercept of linear predictor of
vocalization rate for species A

�7.00 �5.00 (2.00) … �6.9 (�7.26, �6.56)

ΨB0 Intercept of linear predictor of
vocalization rate for species B

�5.00 �5.00 (2.00) … �5.35 (�5.98, �4.74)

ΨC0 Intercept of linear predictor of
vocalization rate for species C

�6.00 �5.00 (2.00) … �6.38 (�7.24, �5.56)

Note: The distribution of the priors was normal, in every case. See Equations (1)–(8) for further details.
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credible intervals (BCIs; calculated for the highest poste-
rior density intervals) from each posterior. Additionally,
we performed model validation to assess the effects of a
range of data-generating parameters on model perfor-
mance, and an exploration of trade-offs between acoustic
and mark–recapture effort (Appendix S1). With this
exploration we aimed to help users optimize field survey
effort allocation to maximize accuracy and precision of
population size estimates.

Case study

We used mist netting and acoustic data from birds in
32 sites in Cameroon, collected over 4 years (2017–2020;
for details see Appendix S1 and Jarrett et al., 2021). Sam-
pling events occurred during either the dry season or the
wet season.

Model structure

Population size of each of the six bird groups at each
sampling event z (Appendix S1) was modeled with a
guild-specific intercept (νi0) and two covariates (Qf ¼ 2Þ:
a guild-specific effect of canopy cover (continuous vari-
able, centered and standardized) on population size
(νi1Xj1) and a seasonal categorical covariate shared
between guilds (ν2Xz2, where Xz2 ¼ 1 if Dry and 0 other-
wise; Equation 9)

Nijz � Poisson Dijz
� �

log Dijz
� �¼ νi0þ νi1Xj1þ ν2Xz2: ð9Þ

We modeled total captures for each sampling unit as in
Equation (4) and individual bird capture histories with
Equation (5). We considered capture rate rij to be guild
specific and to vary between sites according to canopy
cover (Qh ¼ 1; Equation 10), and we considered vocaliza-
tion detection rate to be guild specific but not influenced
by detection covariates (Qr ¼ 0; Equation 11;
Appendix S1)

log rij
� �¼ ρi0þρ1Wj1 ð10Þ

Log λið Þ¼ψi0: ð11Þ

We modeled number of vocalizations with Equation (7).
Priors used for model fitting were normally distrib-

uted (Jarrett, 2022). To compare the performance of

integrated versus single-data-set models, we fit a model
that used only mark–recapture data. For both models we
recorded parameter estimates and BCIs to assess poste-
rior precision of one method relative to another.

RESULTS

Simulation study

The results from testing our model on simulated mark–
recapture and acoustic data demonstrated that overall, the
integrated model more accurately estimated all relevant
parameters: capture rates, vocalization rates, detection
covariate and covariates affecting population size (Figure 1
and Table 1). Compared with the mark–recapture model,
the estimates of population size from the integrated model
were more accurate and precise (Jarrett, 2022). The simu-
lation also confirmed that the parameter estimates from
the integrated model were more accurate and more precise
(Figure 1; Table 1). The single-data-set mark–recapture
model estimated with low precision the coefficients
corresponding to the covariate that affected both popula-
tion size and capture rate (ν1 and ρ1). For these two coeffi-
cients, the integrated model was more than two times
more precise than the mark–recapture model (Figure 1).

Case study

We fit our integrated and single-data-set models to mist-
netting and acoustic data from Cameroonian cocoa farms
and forest sites. Compared with the mark–recapture only
model, the integrated model produced more precise esti-
mates for model parameters and population size
(Figure 2; Jarrett, 2022). The integrated model estimated
with �1.5 times more precision parameters νi1, which
quantify the effect of canopy on population size of each
guild. Estimated population sizes of bird guilds were 165–
233 for frugivores, 67–102 for insectivores, 133–143 for
nectarivores, 3–13 for ant-followers, 20–41 for granivores,
and 67–83 for other. The effect of canopy cover on abun-
dance was different between groups (Figure 2); frugi-
vores, insectivores, and granivores decreased with
increasing canopy cover, while ant-followers showed the
opposite trend. Nectarivores and other birds were largely
unaffected by canopy cover (Figure 2).

DISCUSSION

The improved accuracy and precision of parameter esti-
mates resulting from our integrated model compared
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with the simpler model match previous findings using
different types of data (Doser et al., 2021; Fithian
et al., 2015; Koshkina et al., 2017; Pacifici et al., 2017;

Peel et al., 2019). However, the superior performance of
integrated models should not be taken for granted, espe-
cially in scenarios like our own, where sample sizes are
relatively small and there is overlap between detection
and environmental covariates (Simmonds et al., 2020).
Simmonds et al. (2020) found that, when combining sim-
ulated presence-only (PO) and presence–absence
(PA) data, an integrated model only outperformed a sim-
ple model (just PA) beyond a certain sample size thresh-
old. Additionally, they found that the PA-only model was
more accurate in predicting an environmental covariate
if that covariate also influenced detection probability
(Simmonds et al., 2020). In contrast, also using simulated
PA and PO data, Peel et al. (2019) found little influence
of sample size on accuracy or precision of the estimates
from an integrated model. Overall, it appears that the
effectiveness of integrated models at estimating parame-
ters is variable and dependent on specific characteristics
of the data used.

Doser et al.’s (2021) recent study deftly integrated point
counts and acoustic surveys to estimate the abundance of
a single bird species. They found that the integrated model
produced more accurate and precise results compared
with single-data-set models. Aside from the key difference
in data types used (count versus mark–recapture) and the
single- versus multi-guild element, there were several
additional differences between our approach and that of
Doser et al. (2021). First, our model allows for covariates
that are specific to each sampling instance, and therefore
does not assume that populations stay constant between
visits. Second, our formulation in continuous time allows
for more flexibility in sampling intervals and covariates.
Third, the processing of acoustic data was undertaken dif-
ferently (semi-automatic clustering algorithm versus man-
ual identification), resulting in potential false positives in
Doser et al.’s (2021) study but not in ours. Finally, Doser
et al. (2021) did not include covariates that simultaneously
affected detectability and population size. We conjecture
that mark–recapture data may provide a significant advan-
tage when it comes to estimating population size given
these confounding covariates.

When applied to a real-life scenario of bird populations,
our integrated model produced relatively precise and eco-
logically plausible estimates. The estimated population size
for the different feeding guilds were consistent with other
studies from the tropics (Newmark, 2006), and the relative
abundance of each guild matched previous knowledge
from the system (Jarrett et al., 2021). The largest difference
between the integrated and mark–recapture models was in
the population size estimate for granivores, likely because
granivores were not commonly caught in mist-nets, yet
had high vocalization rates, and therefore acoustic data for
this species were rich.

ψC0

ψB0

ψA0

ρC0

ρB0

ρA0

νC0

νB0

νA0

−4 0 4

Posterior mean ± 95% BCIs

ρ1

ν2

ν1

0.00 0.05 0.10 0.15 0.20

Posterior mean ± 95% BCIs

Mark−recapture Integrated

F I GURE 1 Mean of posterior distribution (and 95% Bayesian

credible intervals [BCIs]) for population size and detection

parameters from mark–recapture only model and integrated model

under simulation. Only the integrated model (with acoustic data)

calculated vocalization rates. The triangles represent the simulation

values. For parameter definitions see Table 1.
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The integrated model benefitted from borrowed
strength between species, both in the observation and
process components. In our observation model, species
shared the effect of canopy cover on capture rates and, in
the process model, species shared a seasonal trend. This
is a small example of strength borrowing in a multi-
species framework, an approach carried out at much
greater depth by Ovaskainen and Abrego (2020), among
others. An additional benefit of our integrated model is
that it provides potentially valuable information on
species’ vocalization rates.

To test the effectiveness of integrating data, we wished
to remove the additional confounding factors of demo-
graphic processes. We therefore assumed that the popula-
tion remained closed within each sampling period. Given
the small sampling intervals used in the survey (6 h), this
assumption is reasonable, but a natural extension of our
model would be to consider longer sampling periods over
which demographic processes occur. Additional extensions
to this model could consider longitudinal effects such as

capture shyness, which can be a common phenomenon in
active trapping methods such as mist-netting (Marques
et al., 2013), and daily fluctuations in bird activity (espe-
cially vocalization). Despite these simplifying assumptions,
our model provides a practical and expandable way to
improve estimates of population size for small-scale field
studies. In general, adding an acoustic recording protocol
to field surveys requires low effort and is relatively inex-
pensive (Bradfer-Lawrence et al., 2020; Whytock &
Christie, 2017). The addition of acoustic data may be espe-
cially beneficial when mark–recapture effort is limited
(e.g., small number of visits) or when capture rates are low
(Appendix S1). While identification of species from acous-
tic recordings can be a time-consuming bottleneck, the
increase in popularity of acoustic methods is resulting in
more and more tools that help with this process (Darras
et al., 2020).

In conclusion, the combination of acoustic and mark–
recapture data offers an opportunity for more accurate
and precise estimates of population size. This method can
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be applied to any taxa for which these data types are
available, including birds, bats, cetaceans, and amphib-
ians. To achieve accurate estimates of population size, we
should move towards a modeling approach that accounts
for possible biases and makes the most of available data.
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